32 Appendix: Statistical Tables and Common Equations
32.1 Table 1: Chi-Squared
| df | 0.5% | 2.5% | 80% | 90% | 95% | 97.5% | 98% | 99% | 99.5% | 99.8% | 99.9% |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.0000392 | 0.0009820 | 1.64 | 2.70 | 3.84 | 5.02 | 5.41 | 6.63 | 7.87 | 9.54 | 10.82 |
| 2 | 0.010 | 0.050 | 3.21 | 4.60 | 5.99 | 7.37 | 7.82 | 9.21 | 10.59 | 12.42 | 13.81 |
| 3 | 0.071 | 0.215 | 4.64 | 6.25 | 7.81 | 9.34 | 9.83 | 11.34 | 12.83 | 14.79 | 16.26 |
| 4 | 0.20 | 0.48 | 5.98 | 7.77 | 9.48 | 11.14 | 11.66 | 13.27 | 14.86 | 16.92 | 18.46 |
| 5 | 0.41 | 0.83 | 7.28 | 9.23 | 11.07 | 12.83 | 13.38 | 15.08 | 16.74 | 18.90 | 20.51 |
| 6 | 0.67 | 1.23 | 8.55 | 10.64 | 12.59 | 14.44 | 15.03 | 16.81 | 18.54 | 20.79 | 22.45 |
| 7 | 0.98 | 1.68 | 9.80 | 12.01 | 14.06 | 16.01 | 16.62 | 18.47 | 20.27 | 22.60 | 24.32 |
| 8 | 1.34 | 2.17 | 11.03 | 13.36 | 15.50 | 17.53 | 18.16 | 20.09 | 21.95 | 24.35 | 26.12 |
| 9 | 1.73 | 2.70 | 12.24 | 14.68 | 16.91 | 19.02 | 19.67 | 21.66 | 23.58 | 26.05 | 27.87 |
| 10 | 2.15 | 3.24 | 13.44 | 15.98 | 18.30 | 20.48 | 21.16 | 23.20 | 25.18 | 27.72 | 29.58 |
| 11 | 2.60 | 3.81 | 14.63 | 17.27 | 19.67 | 21.92 | 22.61 | 24.72 | 26.75 | 29.35 | 31.26 |
| 12 | 3.07 | 4.40 | 15.81 | 18.54 | 21.02 | 23.33 | 24.05 | 26.21 | 28.29 | 30.95 | 32.90 |
| 13 | 3.56 | 5.00 | 16.98 | 19.81 | 22.36 | 24.73 | 25.47 | 27.68 | 29.81 | 32.53 | 34.52 |
| 14 | 4.07 | 5.62 | 18.15 | 21.06 | 23.68 | 26.11 | 26.87 | 29.14 | 31.31 | 34.09 | 36.12 |
| 15 | 4.60 | 6.26 | 19.31 | 22.30 | 24.99 | 27.48 | 28.25 | 30.57 | 32.80 | 35.62 | 37.69 |
| 16 | 5.14 | 6.90 | 20.46 | 23.54 | 26.29 | 28.84 | 29.63 | 31.99 | 34.26 | 37.14 | 39.25 |
| 17 | 5.69 | 7.56 | 21.61 | 24.76 | 27.58 | 30.19 | 30.99 | 33.40 | 35.71 | 38.64 | 40.79 |
| 18 | 6.26 | 8.23 | 22.75 | 25.98 | 28.86 | 31.52 | 32.34 | 34.80 | 37.15 | 40.13 | 42.31 |
| 19 | 6.84 | 8.90 | 23.90 | 27.20 | 30.14 | 32.85 | 33.68 | 36.19 | 38.58 | 41.61 | 43.82 |
| 20 | 7.43 | 9.59 | 25.03 | 28.41 | 31.41 | 34.16 | 35.01 | 37.56 | 39.99 | 43.07 | 45.31 |
| 21 | 8.03 | 10.28 | 26.17 | 29.61 | 32.67 | 35.47 | 36.34 | 38.93 | 41.40 | 44.52 | 46.79 |
32.2 Table 2: k-factor rules
| Data | Censor | Bounds | Rule | Code | Steps |
|---|---|---|---|---|---|
| Complete | None | both | \(k_{ci,r} = \chi^{2}_{ci, 2r} \times \frac{1}{2r}\) | qchisq(ci, df = 2r) / (2r) | Lookup r in Table 3 or 4. |
| Type I | Time | lower | \(k_{ci,r} = \chi^{2}_{ci, 2r} \times \frac{1}{2r}\) | qchisq(ci, df = 2r) / (2r) | Lookup r in Table 4. |
| Type I | Time | upper | \(k_{ci,r} = \chi^{2}_{ci, 2(r + 1)} \times \frac{1}{2r}\) | qchisq(ci, df = 2(r + 1)) / (2r) | Lookup r + 1 in Table 3. |
| Type II | Failures | lower | \(k_{ci,r} = \chi^{2}_{ci, 2r} \times \frac{1}{2r}\) | qchisq(ci, df = 2r) / (2r) | Lookup r in Table 4. |
| Type II | Failures | upper | \(k_{ci,r} = \chi^{2}_{ci, 2((r-1) + 1)} \times \frac{1}{2(r - 1)} \times \frac{(r - 1)}{r}\) | qchisq(ci, df = 2 * ( (r - 1) + 1)) / (2 * (r - 1) ) * (r - 1) / r | Lookup r - 1 in Table 3. Multiply k by \(\frac{(r-1)}{r}\). |
32.3 Table 3: k-factor (upper)
| r | 60% | 80% | 90% | 95% | 97.5% | 99% | 99.9% |
|---|---|---|---|---|---|---|---|
| 1 | 2.02 | 2.99 | 3.89 | 4.74 | 5.57 | 6.64 | 9.23 |
| 2 | 1.55 | 2.14 | 2.66 | 3.15 | 3.61 | 4.20 | 5.61 |
| 3 | 1.39 | 1.84 | 2.23 | 2.58 | 2.92 | 3.35 | 4.35 |
| 4 | 1.31 | 1.68 | 2.00 | 2.29 | 2.56 | 2.90 | 3.70 |
| 5 | 1.26 | 1.58 | 1.85 | 2.10 | 2.33 | 2.62 | 3.29 |
| 6 | 1.22 | 1.51 | 1.76 | 1.97 | 2.18 | 2.43 | 3.01 |
| 7 | 1.20 | 1.46 | 1.68 | 1.88 | 2.06 | 2.29 | 2.80 |
| 8 | 1.18 | 1.42 | 1.62 | 1.80 | 1.97 | 2.18 | 2.64 |
| 9 | 1.16 | 1.39 | 1.58 | 1.75 | 1.90 | 2.09 | 2.52 |
| 10 | 1.15 | 1.37 | 1.54 | 1.70 | 1.84 | 2.01 | 2.41 |
| 11 | 1.14 | 1.34 | 1.51 | 1.66 | 1.79 | 1.95 | 2.33 |
| 12 | 1.13 | 1.32 | 1.48 | 1.62 | 1.75 | 1.90 | 2.25 |
| 13 | 1.12 | 1.31 | 1.46 | 1.59 | 1.71 | 1.86 | 2.19 |
| 14 | 1.12 | 1.29 | 1.44 | 1.56 | 1.68 | 1.82 | 2.13 |
| 15 | 1.11 | 1.28 | 1.42 | 1.54 | 1.65 | 1.78 | 2.08 |
| 16 | 1.11 | 1.27 | 1.40 | 1.52 | 1.62 | 1.75 | 2.04 |
| 17 | 1.10 | 1.26 | 1.39 | 1.50 | 1.60 | 1.72 | 2.00 |
| 18 | 1.10 | 1.25 | 1.38 | 1.48 | 1.58 | 1.70 | 1.96 |
| 19 | 1.10 | 1.24 | 1.36 | 1.47 | 1.56 | 1.68 | 1.93 |
| 20 | 1.09 | 1.24 | 1.35 | 1.45 | 1.54 | 1.66 | 1.90 |
| 21 | 1.09 | 1.23 | 1.34 | 1.44 | 1.53 | 1.64 | 1.87 |
| 22 | 1.09 | 1.22 | 1.33 | 1.43 | 1.51 | 1.62 | 1.85 |
| 23 | 1.08 | 1.22 | 1.32 | 1.42 | 1.50 | 1.60 | 1.83 |
| 24 | 1.08 | 1.21 | 1.32 | 1.41 | 1.49 | 1.59 | 1.81 |
| 25 | 1.08 | 1.21 | 1.31 | 1.40 | 1.48 | 1.57 | 1.79 |
| 26 | 1.08 | 1.20 | 1.30 | 1.39 | 1.47 | 1.56 | 1.77 |
| 27 | 1.07 | 1.20 | 1.29 | 1.38 | 1.45 | 1.55 | 1.75 |
| 28 | 1.07 | 1.19 | 1.29 | 1.37 | 1.45 | 1.53 | 1.73 |
| 29 | 1.07 | 1.19 | 1.28 | 1.36 | 1.44 | 1.52 | 1.72 |
| 30 | 1.07 | 1.19 | 1.28 | 1.36 | 1.43 | 1.51 | 1.70 |
| 31 | 1.07 | 1.18 | 1.27 | 1.35 | 1.42 | 1.50 | 1.69 |
| 32 | 1.07 | 1.18 | 1.27 | 1.34 | 1.41 | 1.49 | 1.68 |
| 33 | 1.07 | 1.18 | 1.26 | 1.34 | 1.40 | 1.49 | 1.66 |
| 34 | 1.06 | 1.17 | 1.26 | 1.33 | 1.40 | 1.48 | 1.65 |
| 35 | 1.06 | 1.17 | 1.25 | 1.33 | 1.39 | 1.47 | 1.64 |
| 36 | 1.06 | 1.17 | 1.25 | 1.32 | 1.38 | 1.46 | 1.63 |
| 37 | 1.06 | 1.16 | 1.25 | 1.32 | 1.38 | 1.45 | 1.62 |
| 38 | 1.06 | 1.16 | 1.24 | 1.31 | 1.37 | 1.45 | 1.61 |
| 39 | 1.06 | 1.16 | 1.24 | 1.31 | 1.37 | 1.44 | 1.60 |
| 40 | 1.06 | 1.16 | 1.23 | 1.30 | 1.36 | 1.43 | 1.59 |
| 41 | 1.06 | 1.15 | 1.23 | 1.30 | 1.36 | 1.43 | 1.58 |
32.4 Table 4: k-factor (lower)
fix = function(x, n){x %>% format(scientific = FALSE) %>%
str_extract(paste(".[0-9]+[.][0-9]{", n, "}", sep = ""))}
table_k_lower = tidyr::expand_grid(
r = c(1:41),
alpha = c(0.60, .80, 0.90, .95, .975, .99, .999)) %>%
mutate(
# Calculate chi-squared for each percentile and df
k = qchisq(1 - alpha, df = (2*r)) / (2*r)) %>%
mutate(k = k %>% round(2)) %>%
mutate(ci = paste((1 - alpha) * 100, "%", sep = "")) %>%
tidyr::pivot_wider(id_cols = c(r), names_from = ci, values_from = k)
table_k_lower %>% write_csv("workshops/k_lower.csv")
k3 = table_k_lower %>%
kable(booktabs = TRUE, format = "html", align = "c", escape = TRUE) %>%
add_header_above(
bold = TRUE, escape = FALSE,
header = c("r fails" = 1, "confidence interval (ci = 1 - alpha level)" = 7)) %>%
add_header_above(italic = TRUE, header = c(" " = 1, "k-upper = qchisq(ci, df = 2*r) / (2*r)" = 7)) %>%
add_header_above(bold = TRUE, header = c(" " = 1, "Type I & II Censoring, No Censoring" = 7)) %>%
add_header_above(bold = TRUE, header = c("Table 4: k-factors for One-Sided Exponential Lower Bound" = 8)) %>%
column_spec(1,border_right = TRUE) %>%
kable_styling(font_size = 12, bootstrap_options = c("striped", "responsive"),full_width = TRUE)
# View table
k3| r | 40% | 20% | 10% | 5% | 2.5% | 1% | 0.1% |
|---|---|---|---|---|---|---|---|
| 1 | 0.51 | 0.22 | 0.11 | 0.05 | 0.03 | 0.01 | 0.00 |
| 2 | 0.69 | 0.41 | 0.27 | 0.18 | 0.12 | 0.07 | 0.02 |
| 3 | 0.76 | 0.51 | 0.37 | 0.27 | 0.21 | 0.15 | 0.06 |
| 4 | 0.80 | 0.57 | 0.44 | 0.34 | 0.27 | 0.21 | 0.11 |
| 5 | 0.83 | 0.62 | 0.49 | 0.39 | 0.32 | 0.26 | 0.15 |
| 6 | 0.85 | 0.65 | 0.53 | 0.44 | 0.37 | 0.30 | 0.18 |
| 7 | 0.86 | 0.68 | 0.56 | 0.47 | 0.40 | 0.33 | 0.22 |
| 8 | 0.87 | 0.70 | 0.58 | 0.50 | 0.43 | 0.36 | 0.25 |
| 9 | 0.88 | 0.71 | 0.60 | 0.52 | 0.46 | 0.39 | 0.27 |
| 10 | 0.89 | 0.73 | 0.62 | 0.54 | 0.48 | 0.41 | 0.30 |
| 11 | 0.90 | 0.74 | 0.64 | 0.56 | 0.50 | 0.43 | 0.32 |
| 12 | 0.90 | 0.75 | 0.65 | 0.58 | 0.52 | 0.45 | 0.34 |
| 13 | 0.91 | 0.76 | 0.67 | 0.59 | 0.53 | 0.47 | 0.35 |
| 14 | 0.91 | 0.77 | 0.68 | 0.60 | 0.55 | 0.48 | 0.37 |
| 15 | 0.91 | 0.78 | 0.69 | 0.62 | 0.56 | 0.50 | 0.39 |
| 16 | 0.92 | 0.79 | 0.70 | 0.63 | 0.57 | 0.51 | 0.40 |
| 17 | 0.92 | 0.79 | 0.70 | 0.64 | 0.58 | 0.52 | 0.41 |
| 18 | 0.92 | 0.80 | 0.71 | 0.65 | 0.59 | 0.53 | 0.43 |
| 19 | 0.93 | 0.80 | 0.72 | 0.65 | 0.60 | 0.54 | 0.44 |
| 20 | 0.93 | 0.81 | 0.73 | 0.66 | 0.61 | 0.55 | 0.45 |
| 21 | 0.93 | 0.81 | 0.73 | 0.67 | 0.62 | 0.56 | 0.46 |
| 22 | 0.93 | 0.82 | 0.74 | 0.68 | 0.63 | 0.57 | 0.47 |
| 23 | 0.93 | 0.82 | 0.74 | 0.68 | 0.63 | 0.58 | 0.48 |
| 24 | 0.94 | 0.83 | 0.75 | 0.69 | 0.64 | 0.59 | 0.49 |
| 25 | 0.94 | 0.83 | 0.75 | 0.70 | 0.65 | 0.59 | 0.49 |
| 26 | 0.94 | 0.83 | 0.76 | 0.70 | 0.65 | 0.60 | 0.50 |
| 27 | 0.94 | 0.84 | 0.76 | 0.71 | 0.66 | 0.61 | 0.51 |
| 28 | 0.94 | 0.84 | 0.77 | 0.71 | 0.66 | 0.61 | 0.52 |
| 29 | 0.94 | 0.84 | 0.77 | 0.72 | 0.67 | 0.62 | 0.52 |
| 30 | 0.94 | 0.84 | 0.77 | 0.72 | 0.67 | 0.62 | 0.53 |
| 31 | 0.94 | 0.85 | 0.78 | 0.72 | 0.68 | 0.63 | 0.54 |
| 32 | 0.95 | 0.85 | 0.78 | 0.73 | 0.68 | 0.64 | 0.54 |
| 33 | 0.95 | 0.85 | 0.78 | 0.73 | 0.69 | 0.64 | 0.55 |
| 34 | 0.95 | 0.85 | 0.79 | 0.74 | 0.69 | 0.64 | 0.55 |
| 35 | 0.95 | 0.86 | 0.79 | 0.74 | 0.70 | 0.65 | 0.56 |
| 36 | 0.95 | 0.86 | 0.79 | 0.74 | 0.70 | 0.65 | 0.56 |
| 37 | 0.95 | 0.86 | 0.80 | 0.75 | 0.70 | 0.66 | 0.57 |
| 38 | 0.95 | 0.86 | 0.80 | 0.75 | 0.71 | 0.66 | 0.57 |
| 39 | 0.95 | 0.86 | 0.80 | 0.75 | 0.71 | 0.67 | 0.58 |
| 40 | 0.95 | 0.87 | 0.80 | 0.75 | 0.71 | 0.67 | 0.58 |
| 41 | 0.95 | 0.87 | 0.81 | 0.76 | 0.72 | 0.67 | 0.59 |
32.5 Table 5: Control Constants (d)
| n | d2 | d3 | D3 | D4 |
|---|---|---|---|---|
| 2 | 1.116 | 0.850 | 0.000 | 3.285 |
| 3 | 1.691 | 0.890 | 0.000 | 2.579 |
| 4 | 2.053 | 0.869 | 0.000 | 2.271 |
| 5 | 2.328 | 0.869 | 0.000 | 2.120 |
| 6 | 2.531 | 0.851 | 0.000 | 2.009 |
| 7 | 2.712 | 0.837 | 0.074 | 1.926 |
| 8 | 2.837 | 0.815 | 0.138 | 1.862 |
| 9 | 2.979 | 0.819 | 0.175 | 1.825 |
| 10 | 3.068 | 0.795 | 0.223 | 1.777 |
| 11 | 3.190 | 0.792 | 0.256 | 1.744 |
| 12 | 3.258 | 0.768 | 0.293 | 1.707 |
| 13 | 3.340 | 0.771 | 0.308 | 1.692 |
| 14 | 3.409 | 0.765 | 0.326 | 1.674 |
| 15 | 3.475 | 0.757 | 0.346 | 1.654 |
| 16 | 3.536 | 0.750 | 0.364 | 1.636 |
| 17 | 3.584 | 0.739 | 0.381 | 1.619 |
| 18 | 3.637 | 0.733 | 0.395 | 1.605 |
| 19 | 3.667 | 0.726 | 0.406 | 1.594 |
| 20 | 3.728 | 0.732 | 0.411 | 1.589 |
| 21 | 3.777 | 0.716 | 0.431 | 1.569 |
| 22 | 3.807 | 0.704 | 0.445 | 1.555 |
| 23 | 3.853 | 0.714 | 0.444 | 1.556 |
| 24 | 3.889 | 0.716 | 0.448 | 1.552 |
| 25 | 3.933 | 0.714 | 0.455 | 1.545 |
| 26 | 3.966 | 0.700 | 0.470 | 1.530 |
| 27 | 3.987 | 0.697 | 0.475 | 1.525 |
| 28 | 4.027 | 0.703 | 0.476 | 1.524 |
| 29 | 4.051 | 0.690 | 0.489 | 1.511 |
| 30 | 4.079 | 0.694 | 0.489 | 1.511 |
| 31 | 4.109 | 0.690 | 0.496 | 1.504 |
| 32 | 4.138 | 0.694 | 0.497 | 1.503 |
| 33 | 4.155 | 0.678 | 0.511 | 1.489 |
| 34 | 4.188 | 0.671 | 0.519 | 1.481 |
| 35 | 4.211 | 0.675 | 0.519 | 1.481 |
| 36 | 4.242 | 0.673 | 0.524 | 1.476 |
| 37 | 4.260 | 0.669 | 0.529 | 1.471 |
| 38 | 4.278 | 0.677 | 0.526 | 1.474 |
| 39 | 4.301 | 0.678 | 0.527 | 1.473 |
| 40 | 4.309 | 0.670 | 0.534 | 1.466 |
| 41 | 4.346 | 0.674 | 0.535 | 1.465 |
| 42 | 4.355 | 0.672 | 0.537 | 1.463 |
| 43 | 4.374 | 0.660 | 0.547 | 1.453 |
| 44 | 4.395 | 0.663 | 0.548 | 1.452 |
| 45 | 4.418 | 0.657 | 0.554 | 1.446 |
| 46 | 4.420 | 0.655 | 0.555 | 1.445 |
| 47 | 4.453 | 0.663 | 0.554 | 1.446 |
| 48 | 4.473 | 0.669 | 0.551 | 1.449 |
| 49 | 4.491 | 0.650 | 0.566 | 1.434 |
| 50 | 4.513 | 0.651 | 0.567 | 1.433 |
32.6 Table 6: Control Constants (b)
| n | b2 | b3 | C4 | A3 | B3 | B4 |
|---|---|---|---|---|---|---|
| 2 | 0.796 | 0.601 | 0.796 | 2.665 | 0.000 | 3.267 |
| 3 | 0.882 | 0.459 | 0.882 | 1.963 | 0.000 | 2.561 |
| 4 | 0.918 | 0.388 | 0.918 | 1.633 | 0.000 | 2.269 |
| 5 | 0.935 | 0.335 | 0.935 | 1.436 | 0.000 | 2.074 |
| 6 | 0.949 | 0.304 | 0.949 | 1.291 | 0.039 | 1.961 |
| 7 | 0.954 | 0.283 | 0.954 | 1.189 | 0.109 | 1.891 |
| 8 | 0.968 | 0.264 | 0.968 | 1.095 | 0.183 | 1.817 |
| 9 | 0.968 | 0.247 | 0.968 | 1.033 | 0.235 | 1.765 |
| 10 | 0.975 | 0.233 | 0.975 | 0.973 | 0.284 | 1.716 |
| 11 | 0.978 | 0.222 | 0.978 | 0.925 | 0.318 | 1.682 |
| 12 | 0.980 | 0.212 | 0.980 | 0.884 | 0.350 | 1.650 |
| 13 | 0.979 | 0.200 | 0.979 | 0.850 | 0.386 | 1.614 |
| 14 | 0.982 | 0.193 | 0.982 | 0.817 | 0.409 | 1.591 |
| 15 | 0.984 | 0.183 | 0.984 | 0.787 | 0.441 | 1.559 |
| 16 | 0.985 | 0.180 | 0.985 | 0.761 | 0.452 | 1.548 |
| 17 | 0.980 | 0.175 | 0.980 | 0.742 | 0.466 | 1.534 |
| 18 | 0.986 | 0.173 | 0.986 | 0.717 | 0.474 | 1.526 |
| 19 | 0.986 | 0.166 | 0.986 | 0.698 | 0.496 | 1.504 |
| 20 | 0.985 | 0.161 | 0.985 | 0.681 | 0.511 | 1.489 |
| 21 | 0.987 | 0.158 | 0.987 | 0.663 | 0.521 | 1.479 |
| 22 | 0.988 | 0.152 | 0.988 | 0.647 | 0.538 | 1.462 |
| 23 | 0.986 | 0.149 | 0.986 | 0.634 | 0.547 | 1.453 |
| 24 | 0.991 | 0.147 | 0.991 | 0.618 | 0.556 | 1.444 |
| 25 | 0.987 | 0.145 | 0.987 | 0.608 | 0.560 | 1.440 |
| 26 | 0.990 | 0.140 | 0.990 | 0.595 | 0.576 | 1.424 |
| 27 | 0.992 | 0.136 | 0.992 | 0.582 | 0.589 | 1.411 |
| 28 | 0.990 | 0.135 | 0.990 | 0.572 | 0.591 | 1.409 |
| 29 | 0.989 | 0.131 | 0.989 | 0.563 | 0.602 | 1.398 |
| 30 | 0.992 | 0.132 | 0.992 | 0.552 | 0.601 | 1.399 |
| 31 | 0.992 | 0.129 | 0.992 | 0.543 | 0.611 | 1.389 |
| 32 | 0.992 | 0.128 | 0.992 | 0.535 | 0.613 | 1.387 |
| 33 | 0.993 | 0.126 | 0.993 | 0.526 | 0.620 | 1.380 |
| 34 | 0.992 | 0.124 | 0.992 | 0.518 | 0.625 | 1.375 |
| 35 | 0.993 | 0.120 | 0.993 | 0.511 | 0.637 | 1.363 |
| 36 | 0.992 | 0.118 | 0.992 | 0.504 | 0.643 | 1.357 |
| 37 | 0.996 | 0.117 | 0.996 | 0.495 | 0.647 | 1.353 |
| 38 | 0.991 | 0.116 | 0.991 | 0.491 | 0.648 | 1.352 |
| 39 | 0.993 | 0.114 | 0.993 | 0.484 | 0.654 | 1.346 |
| 40 | 0.994 | 0.113 | 0.994 | 0.477 | 0.659 | 1.341 |
| 41 | 0.994 | 0.112 | 0.994 | 0.471 | 0.661 | 1.339 |
| 42 | 0.995 | 0.109 | 0.995 | 0.465 | 0.671 | 1.329 |
| 43 | 0.994 | 0.110 | 0.994 | 0.460 | 0.669 | 1.331 |
| 44 | 0.997 | 0.108 | 0.997 | 0.454 | 0.676 | 1.324 |
| 45 | 0.996 | 0.107 | 0.996 | 0.449 | 0.679 | 1.321 |
| 46 | 0.995 | 0.105 | 0.995 | 0.445 | 0.684 | 1.316 |
| 47 | 0.996 | 0.103 | 0.996 | 0.440 | 0.691 | 1.309 |
| 48 | 0.993 | 0.102 | 0.993 | 0.436 | 0.692 | 1.308 |
| 49 | 0.996 | 0.101 | 0.996 | 0.430 | 0.696 | 1.304 |
| 50 | 0.992 | 0.100 | 0.992 | 0.427 | 0.697 | 1.303 |
32.7 Formula
c1 = box(title = "Exponential Distribution",
span("$$ f(t) = \\lambda e^{-\\lambda t } $$"),
span("$$ F(t) = 1 - e^{-\\lambda t } $$"),
span("$$ MTTF = \\frac{1}{\\lambda} $$"))
c2 = box(title = "Weibull Distribution",
span("$$ f(t) = \\frac{m}{c} (\\frac{t}{c})^{m-1} \\times e^{-(t / c)^m } $$"),
span("$$ F(t) = 1 - e^{-(t/c)^m} $$")
)
c3 = box(
title = "Estimating Lambda",
span("$$ \\hat{\\lambda} = \\frac{r}{\\sum_{i=1}^{r}{ t_i } + (n - r) \\times T_{max} } $$"),
span("$$ Type \\ I: \\ T_{max} = \\ end \\ of \\ study \\ period \\\\ Type \\ II: \\ T_{max} = \\ time \\ of \\ last \\ failure $$")
)
c4 = box(title = "Maximum Failure Rate",
span("$$ \\ when \\ r \\geq 1 \\ failures \\\\ \\lambda_{(1 - \\alpha)} = \\hat{\\lambda} \\times k_{ \\ r, (1-\\alpha)} $$"),
span("$$ when \\ r = 0 \\ failures \\\\ \\lambda_{(1 - \\alpha)} = \\frac{-ln(\\alpha ) }{n \\times T} $$"))
c5 = box(title = "Chi-squared Statistic",
span("$$ \\chi^{2} = \\sum{ \\frac{(observed - expected)^{2} }{ expected }} $$ "),
span("$$ Degrees \\ of \\ Freedom \\ (df) \\ for \\ \\chi^{2} \\\\ df = n_{intervals} - 1 - n_{parameters} $$")
)
c6 = box(title = "Process Indices",
span("$$ C_{p} = \\frac{ E_{upper} - E_{lower} }{6 \\sigma_{short} }
\\\\
C_{pk} = \\frac{ | E_{limit} - \\mu | }{3 \\sigma_{short} } $$"),
span("$$ P_{p} = \\frac{ E_{upper} - E_{lower} }{6 \\sigma_{total} }
\\\\
P_{pk} = \\frac{ | E_{limit} - \\mu | }{3 \\sigma_{total} } $$"),
)
bslib::layout_column_wrap(
c1, c2, c3, c4, c5, c6,
width = 0.5,
fill = TRUE
)Exponential Distribution
$$ f(t) = \lambda e^{-\lambda t } $$
$$ F(t) = 1 - e^{-\lambda t } $$
$$ MTTF = \frac{1}{\lambda} $$
Weibull Distribution
$$ f(t) = \frac{m}{c} (\frac{t}{c})^{m-1} \times e^{-(t / c)^m } $$
$$ F(t) = 1 - e^{-(t/c)^m} $$
Estimating Lambda
$$ \hat{\lambda} = \frac{r}{\sum_{i=1}^{r}{ t_i } + (n - r) \times T_{max} } $$
$$ Type \ I: \ T_{max} = \ end \ of \ study \ period \\ Type \ II: \ T_{max} = \ time \ of \ last \ failure $$
Maximum Failure Rate
$$ \ when \ r \geq 1 \ failures \\ \lambda_{(1 - \alpha)} = \hat{\lambda} \times k_{ \ r, (1-\alpha)} $$
$$ when \ r = 0 \ failures \\ \lambda_{(1 - \alpha)} = \frac{-ln(\alpha ) }{n \times T} $$
Chi-squared Statistic
$$ \chi^{2} = \sum{ \frac{(observed - expected)^{2} }{ expected }} $$
$$ Degrees \ of \ Freedom \ (df) \ for \ \chi^{2} \\ df = n_{intervals} - 1 - n_{parameters} $$
Process Indices
$$ C_{p} = \frac{ E_{upper} - E_{lower} }{6 \sigma_{short} }
\\
C_{pk} = \frac{ | E_{limit} - \mu | }{3 \sigma_{short} } $$
$$ P_{p} = \frac{ E_{upper} - E_{lower} }{6 \sigma_{total} }
\\
P_{pk} = \frac{ | E_{limit} - \mu | }{3 \sigma_{total} } $$